Mathematical Typography Showcase
Welcome to our comprehensive mathematical typography demonstration. This Next.js blog leverages MathJax for server-side rendering of mathematical expressions, providing crisp, accessible, and responsive mathematical content.
Quick test: E = m c 2 E = mc^2 E = m c 2 and display equation:
∫ − ∞ ∞ e − x 2 d x = π \int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi} ∫ − ∞ ∞ e − x 2 d x = π
Why MathJax?
Our blog uses MathJax for several key advantages:
Comprehensive LaTeX Support : Full compatibility with LaTeX math syntax
Server-Side Rendering : Math is rendered on the server for optimal performance
Accessibility : Screen reader compatible with proper semantic markup
Responsive Design : Mathematical expressions adapt to all screen sizes
High Quality : Professional typography with proper spacing and alignment
Basic Mathematical Expressions
Inline Mathematics
Mathematics can flow naturally within text using single dollar signs. For example, the famous equation E = m c 2 E = mc^2 E = m c 2 revolutionized physics, while the quadratic formula x = − b ± b 2 − 4 a c 2 a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} x = 2 a − b ± b 2 − 4 a c solves second-degree polynomials.
Other inline examples include Euler's number e ≈ 2.718 e \approx 2.718 e ≈ 2.718 , the golden ratio ϕ = 1 + 5 2 \phi = \frac{1 + \sqrt{5}}{2} ϕ = 2 1 + 5 , and the imaginary unit i = − 1 i = \sqrt{-1} i = − 1 .
Display Mathematics
For larger, more complex expressions, we use display mode with double dollar signs:
∫ − ∞ ∞ e − x 2 d x = π \int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi} ∫ − ∞ ∞ e − x 2 d x = π
The Schrödinger equation in quantum mechanics:
i ℏ ∂ ∂ t Ψ ( r , t ) = H ^ Ψ ( r , t ) i\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \hat{H}\Psi(\mathbf{r},t) i ℏ ∂ t ∂ Ψ ( r , t ) = H ^ Ψ ( r , t )
Euler's identity, often called the most beautiful equation in mathematics:
e i π + 1 = 0 e^{i\pi} + 1 = 0 e iπ + 1 = 0
Advanced Mathematical Structures
Matrices and Linear Algebra
Matrix multiplication is elegantly displayed:
( a b c d ) ( x y ) = ( a x + b y c x + d y ) \begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
=
\begin{pmatrix}
ax + by \\
cx + dy
\end{pmatrix} ( a c b d ) ( x y ) = ( a x + b y c x + d y )
The determinant of a 3×3 matrix (with line breaks for readability):
det ( A ) = a 11 ( a 22 a 33 − a 23 a 32 ) − a 12 ( a 21 a 33 − a 23 a 31 ) + a 13 ( a 21 a 32 − a 22 a 31 ) \begin{align}
\det(A) &= a_{11}(a_{22}a_{33} - a_{23}a_{32}) \\
&\quad - a_{12}(a_{21}a_{33} - a_{23}a_{31}) \\
&\quad + a_{13}(a_{21}a_{32} - a_{22}a_{31})
\end{align} det ( A ) = a 11 ( a 22 a 33 − a 23 a 32 ) − a 12 ( a 21 a 33 − a 23 a 31 ) + a 13 ( a 21 a 32 − a 22 a 31 )
Eigenvalue equation:
A v = λ v A\mathbf{v} = \lambda\mathbf{v} A v = λ v
Calculus and Analysis
Derivatives and Limits
The fundamental definition of a derivative:
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} f ′ ( x ) = h → 0 lim h f ( x + h ) − f ( x )
Partial derivatives in multivariable calculus:
∂ f ∂ x = lim h → 0 f ( x + h , y ) − f ( x , y ) h \frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h} ∂ x ∂ f = h → 0 lim h f ( x + h , y ) − f ( x , y )
The chain rule for composite functions:
d d x [ f ( g ( x ) ) ] = f ′ ( g ( x ) ) ⋅ g ′ ( x ) \frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x) d x d [ f ( g ( x ))] = f ′ ( g ( x )) ⋅ g ′ ( x )
Integrals and Series
The Riemann sum definition of integration:
∫ a b f ( x ) d x = lim n → ∞ ∑ i = 1 n f ( x i ) Δ x \int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x ∫ a b f ( x ) d x = n → ∞ lim i = 1 ∑ n f ( x i ) Δ x
Taylor series expansion:
f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + f ′ ′ ′ ( a ) 3 ! ( x − a ) 3 + ⋯ f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + 2 ! f ′′ ( a ) ( x − a ) 2 + 3 ! f ′′′ ( a ) ( x − a ) 3 + ⋯
The Fourier transform:
f ^ ( ξ ) = ∫ − ∞ ∞ f ( x ) e − 2 π i x ξ d x \hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx f ^ ( ξ ) = ∫ − ∞ ∞ f ( x ) e − 2 πi x ξ d x
Probability and Statistics
Probability Distributions
The normal (Gaussian) distribution:
f ( x ) = 1 σ 2 π e − 1 2 ( x − μ σ ) 2 f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} f ( x ) = σ 2 π 1 e − 2 1 ( σ x − μ ) 2
Bayes' theorem, fundamental to statistical inference:
P ( A ∣ B ) = P ( B ∣ A ) ⋅ P ( A ) P ( B ) P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} P ( A ∣ B ) = P ( B ) P ( B ∣ A ) ⋅ P ( A )
The binomial probability mass function:
P ( X = k ) = ( n k ) p k ( 1 − p ) n − k P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} P ( X = k ) = ( k n ) p k ( 1 − p ) n − k
Information Theory
Shannon entropy:
H ( X ) = − ∑ i = 1 n p ( x i ) log 2 p ( x i ) H(X) = -\sum_{i=1}^n p(x_i) \log_2 p(x_i) H ( X ) = − i = 1 ∑ n p ( x i ) log 2 p ( x i )
Advanced Physics and Engineering
Quantum Mechanics
The time-dependent Schrödinger equation:
i ℏ ∂ ∂ t ∣ ψ ( t ) ⟩ = H ^ ∣ ψ ( t ) ⟩ i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle = \hat{H}|\psi(t)\rangle i ℏ ∂ t ∂ ∣ ψ ( t )⟩ = H ^ ∣ ψ ( t )⟩
Heisenberg uncertainty principle:
Δ x Δ p ≥ ℏ 2 \Delta x \Delta p \geq \frac{\hbar}{2} Δ x Δ p ≥ 2 ℏ
Wave function normalization:
∫ − ∞ ∞ ∣ ψ ( x ) ∣ 2 d x = 1 \int_{-\infty}^{\infty} |\psi(x)|^2 dx = 1 ∫ − ∞ ∞ ∣ ψ ( x ) ∣ 2 d x = 1
Electromagnetic Theory
Maxwell's equations in differential form (numbered):
∇ ⋅ E = ρ ϵ 0 ∇ ⋅ B = 0 ∇ × E = − ∂ B ∂ t ∇ × B = μ 0 J + μ 0 ϵ 0 ∂ E ∂ t \begin{align}
\nabla \cdot \mathbf{E} &= \frac{\rho}{\epsilon_0} \tag{1} \\
\nabla \cdot \mathbf{B} &= 0 \tag{2} \\
\nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \tag{3} \\
\nabla \times \mathbf{B} &= \mu_0\mathbf{J} + \mu_0\epsilon_0\frac{\partial \mathbf{E}}{\partial t} \tag{4}
\end{align} ∇ ⋅ E ∇ ⋅ B ∇ × E ∇ × B = ϵ 0 ρ = 0 = − ∂ t ∂ B = μ 0 J + μ 0 ϵ 0 ∂ t ∂ E ( 1 ) ( 2 ) ( 3 ) ( 4 )
General Relativity
Einstein's field equations:
G μ ν + Λ g μ ν = 8 π G c 4 T μ ν G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu} G μν + Λ g μν = c 4 8 π G T μν
The metric tensor for Schwarzschild spacetime:
d s 2 = − ( 1 − 2 G M c 2 r ) c 2 d t 2 + ( 1 − 2 G M c 2 r ) − 1 d r 2 + r 2 d θ 2 + r 2 sin 2 θ d ϕ 2 ds^2 = -\left(1-\frac{2GM}{c^2r}\right)c^2dt^2 + \left(1-\frac{2GM}{c^2r}\right)^{-1}dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\phi^2 d s 2 = − ( 1 − c 2 r 2 GM ) c 2 d t 2 + ( 1 − c 2 r 2 GM ) − 1 d r 2 + r 2 d θ 2 + r 2 sin 2 θ d ϕ 2
Complex Analysis and Advanced Topics
Residue Theory
The residue theorem for complex integration:
∮ C f ( z ) d z = 2 π i ∑ k = 1 n Res ( f , a k ) \oint_C f(z) dz = 2\pi i \sum_{k=1}^n \text{Res}(f, a_k) ∮ C f ( z ) d z = 2 πi k = 1 ∑ n Res ( f , a k )
For a simple pole at z = a z = a z = a :
Res ( f , a ) = lim z → a ( z − a ) f ( z ) \text{Res}(f, a) = \lim_{z \to a} (z-a)f(z) Res ( f , a ) = z → a lim ( z − a ) f ( z )
Number Theory
The Riemann zeta function:
ζ ( s ) = ∑ n = 1 ∞ 1 n s = ∏ p prime 1 1 − p − s \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1-p^{-s}} ζ ( s ) = n = 1 ∑ ∞ n s 1 = p prime ∏ 1 − p − s 1
Euler's product formula connecting primes and integers:
∑ n = 1 ∞ 1 n s = ∏ p ( 1 + 1 p s + 1 p 2 s + 1 p 3 s + ⋯ ) \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \frac{1}{p^{3s}} + \cdots\right) n = 1 ∑ ∞ n s 1 = p ∏ ( 1 + p s 1 + p 2 s 1 + p 3 s 1 + ⋯ )
Topology and Geometry
The Gauss-Bonnet theorem:
∫ M K d A + ∫ ∂ M k g d s = 2 π χ ( M ) \int_M K \, dA + \int_{\partial M} k_g \, ds = 2\pi \chi(M) ∫ M K d A + ∫ ∂ M k g d s = 2 π χ ( M )
Fundamental group representation:
π 1 ( X , x 0 ) = { [ γ ] : γ is a loop at x 0 } / ∼ \pi_1(X, x_0) = \{[\gamma] : \gamma \text{ is a loop at } x_0\} / \sim π 1 ( X , x 0 ) = {[ γ ] : γ is a loop at x 0 } / ∼
Special Functions and Advanced Constructs
Bessel Functions
The Bessel differential equation:
x 2 d 2 y d x 2 + x d y d x + ( x 2 − ν 2 ) y = 0 x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - \nu^2) y = 0 x 2 d x 2 d 2 y + x d x d y + ( x 2 − ν 2 ) y = 0
Gamma Function
The gamma function and its properties:
Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t \Gamma(z) = \int_0^{\infty} t^{z-1} e^{-t} dt Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t
With the functional equation:
Γ ( z + 1 ) = z Γ ( z ) \Gamma(z+1) = z\Gamma(z) Γ ( z + 1 ) = z Γ ( z )
Hypergeometric Functions
The hypergeometric function:
2 F 1 ( a , b ; c ; z ) = ∑ n = 0 ∞ ( a ) n ( b ) n ( c ) n z n n ! {}_2F_1(a,b;c;z) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n} \frac{z^n}{n!} 2 F 1 ( a , b ; c ; z ) = n = 0 ∑ ∞ ( c ) n ( a ) n ( b ) n n ! z n
Conditional and Piecewise Functions
Functions with multiple conditions:
f ( x ) = { x 2 if x ≥ 0 − x 2 if x < 0 0 if x = 0 f(x) = \begin{cases}
x^2 & \text{if } x \geq 0 \\
-x^2 & \text{if } x < 0 \\
0 & \text{if } x = 0
\end{cases} f ( x ) = ⎩ ⎨ ⎧ x 2 − x 2 0 if x ≥ 0 if x < 0 if x = 0
The Heaviside step function:
H ( x ) = { 0 if x < 0 1 2 if x = 0 1 if x > 0 H(x) = \begin{cases}
0 & \text{if } x < 0 \\
\frac{1}{2} & \text{if } x = 0 \\
1 & \text{if } x > 0
\end{cases} H ( x ) = ⎩ ⎨ ⎧ 0 2 1 1 if x < 0 if x = 0 if x > 0
Advanced Typography Features
Multi-line Equations with Alignment
System of linear equations:
2 x + 3 y − z = 1 x − y + 2 z = 3 3 x + 2 y + z = 7 \begin{align}
2x + 3y - z &= 1 \\
x - y + 2z &= 3 \\
3x + 2y + z &= 7
\end{align} 2 x + 3 y − z x − y + 2 z 3 x + 2 y + z = 1 = 3 = 7
Large Operators and Limits
Multiple summations and products:
∑ i = 1 n ∑ j = 1 m ∏ k = 1 p a i j k \sum_{i=1}^{n} \sum_{j=1}^{m} \prod_{k=1}^{p} a_{ijk} i = 1 ∑ n j = 1 ∑ m k = 1 ∏ p a ijk
Nested integrals with limits:
∭ D f ( x , y , z ) d x d y d z = ∫ z 1 z 2 ∫ y 1 ( z ) y 2 ( z ) ∫ x 1 ( y , z ) x 2 ( y , z ) f ( x , y , z ) d x d y d z \iiint_D f(x,y,z) \, dx \, dy \, dz = \int_{z_1}^{z_2} \int_{y_1(z)}^{y_2(z)} \int_{x_1(y,z)}^{x_2(y,z)} f(x,y,z) \, dx \, dy \, dz ∭ D f ( x , y , z ) d x d y d z = ∫ z 1 z 2 ∫ y 1 ( z ) y 2 ( z ) ∫ x 1 ( y , z ) x 2 ( y , z ) f ( x , y , z ) d x d y d z
Continued Fractions
The golden ratio as an infinite continued fraction:
ϕ = 1 + 1 1 + 1 1 + 1 1 + 1 1 + ⋱ \phi = 1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \ddots}}}} ϕ = 1 + 1 + 1 + 1 + 1 + ⋱ 1 1 1 1
Commutative Diagrams
While MathJax supports basic diagram structures:
A → f B ↓ ↓ C → g D \begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow & & \downarrow \\
C & \xrightarrow{g} & D
\end{array} A ↓ C f g B ↓ D
Greek Letters and Special Symbols
Complete Greek Alphabet
Lowercase : α , β , γ , δ , ϵ , ε , ζ , η , θ , ϑ , ι , κ , λ , μ , ν , ξ , π , ϖ , ρ , ϱ , σ , ς , τ , υ , ϕ , φ , χ , ψ , ω \alpha, \beta, \gamma, \delta, \epsilon, \varepsilon, \zeta, \eta, \theta, \vartheta, \iota, \kappa, \lambda, \mu, \nu, \xi, \pi, \varpi, \rho, \varrho, \sigma, \varsigma, \tau, \upsilon, \phi, \varphi, \chi, \psi, \omega α , β , γ , δ , ϵ , ε , ζ , η , θ , ϑ , ι , κ , λ , μ , ν , ξ , π , ϖ , ρ , ϱ , σ , ς , τ , υ , ϕ , φ , χ , ψ , ω
Uppercase : A , B , Γ , Δ , E , Z , H , Θ , I , K , Λ , M , N , Ξ , Π , P , Σ , T , Υ , Φ , X , Ψ , Ω A, B, \Gamma, \Delta, E, Z, H, \Theta, I, K, \Lambda, M, N, \Xi, \Pi, P, \Sigma, T, \Upsilon, \Phi, X, \Psi, \Omega A , B , Γ , Δ , E , Z , H , Θ , I , K , Λ , M , N , Ξ , Π , P , Σ , T , Υ , Φ , X , Ψ , Ω
Mathematical Operators
Set theory: ∪ , ∩ , ⊂ , ⊆ , ⊃ , ⊇ , ∈ , ∉ , ∅ , ∅ \cup, \cap, \subset, \subseteq, \supset, \supseteq, \in, \notin, \emptyset, \varnothing ∪ , ∩ , ⊂ , ⊆ , ⊃ , ⊇ , ∈ , ∈ / , ∅ , ∅
Logic: ∧ , ∨ , ¬ , ⟹ , ⟺ , ∃ , ∀ , ∴ , ∵ \land, \lor, \neg, \implies, \iff, \exists, \forall, \therefore, \because ∧ , ∨ , ¬ , ⟹ , ⟺ , ∃ , ∀ , ∴ , ∵
Relations: ≤ , ≥ , ≪ , ≫ , ≡ , ≈ , ∼ , ≃ , ≅ , ∝ \leq, \geq, \ll, \gg, \equiv, \approx, \sim, \simeq, \cong, \propto ≤ , ≥ , ≪ , ≫ , ≡ , ≈ , ∼ , ≃ , ≅ , ∝
Arrows: → , ← , ↔ , ⇒ , ⇐ , ⇔ , ↦ , → \rightarrow, \leftarrow, \leftrightarrow, \Rightarrow, \Leftarrow, \Leftrightarrow, \mapsto, \to → , ← , ↔ , ⇒ , ⇐ , ⇔ , ↦ , →
Responsive Design Features
Our mathematical typography is fully responsive:
Mobile Optimization : Long equations scroll horizontally on small screens
Touch-Friendly : Proper spacing for touch interaction
High DPI Support : Crisp rendering on all device resolutions
Accessibility : Screen reader compatible with proper semantic markup
Dark Mode : Expressions adapt to light and dark themes seamlessly
Performance and Quality
Server-Side Rendering Benefits
Fast Initial Load : Math is pre-rendered on the server
SEO Friendly : Search engines can index mathematical content
No Client-Side Processing : Reduces browser computational load
Consistent Rendering : Identical appearance across all browsers
Typography Quality
Professional Spacing : Proper mathematical spacing rules
Font Consistency : Harmonious integration with body text
Symbol Clarity : High-quality mathematical symbols and operators
Layout Stability : No content shift during rendering
Usage Guidelines
Best Practices
Inline Math : Use $...$
for mathematical expressions within sentences
Display Math : Use $$...$$
for centered, standalone equations
Spacing : Let MathJax handle spacing automatically
Line Breaks : Use \\
for multi-line expressions
Alignment : Use align
environment for aligned equation systems
Syntax Examples
Inline Mathematics:
Here's an example of inline math: ∫ 0 1 x 2 d x = 1 3 \int_0^1 x^2 dx = \frac{1}{3} ∫ 0 1 x 2 d x = 3 1
Display Mathematics:
∑ n = 1 ∞ 1 n 2 = π 2 6 \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} n = 1 ∑ ∞ n 2 1 = 6 π 2
Aligned Equations:
cos 2 θ + sin 2 θ = 1 cos ( 2 θ ) = cos 2 θ − sin 2 θ \begin{align}
\cos^2\theta + \sin^2\theta &= 1 \\
\cos(2\theta) &= \cos^2\theta - \sin^2\theta
\end{align} cos 2 θ + sin 2 θ cos ( 2 θ ) = 1 = cos 2 θ − sin 2 θ
Source Code Examples:
Inline: $\int_0^1 x^2 dx = \frac{1}{3}$
Display:
$$
\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}
$$
Aligned:
$$
\begin{align}
\cos^2\theta + \sin^2\theta &= 1 \\
\cos(2\theta) &= \cos^2\theta - \sin^2\theta
\end{align}
$$
Conclusion
This showcase demonstrates the comprehensive mathematical typography capabilities of our Next.js blog. With MathJax providing server-side rendering, we achieve professional-quality mathematical content that is fast, accessible, and responsive across all devices.
Whether you're writing about basic algebra or advanced theoretical physics, our platform provides the tools needed for clear, beautiful mathematical communication.
Key Features Demonstrated:
Inline and display mathematics
Complex multi-line equations
Matrix and vector notation
Greek letters and special symbols
Responsive design principles
Accessibility compliance
Professional typography standards
The combination of Next.js, MathJax, and careful responsive design creates an optimal environment for technical and mathematical content creation.