neuralwired
HomeBlogGitHubTwitter
HomeBlogGitHubTwitter
neuralwired
2025 neuralwired.
Built with Next.js
backshare
Mathematical Typography Showcase

Mathematical Typography Showcase

Published: August 5, 2025
Modified: August 5, 2025
MathematicsTypographyMathJaxTechnical Writing

Mathematical Typography Showcase

Welcome to our comprehensive mathematical typography demonstration. This Next.js blog leverages MathJax for server-side rendering of mathematical expressions, providing crisp, accessible, and responsive mathematical content.

Quick test: E=mc2E = mc^2E=mc2 and display equation:

∫−∞∞e−x2dx=π\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}∫−∞∞​e−x2dx=π​

Why MathJax?

Our blog uses MathJax for several key advantages:

  • Comprehensive LaTeX Support: Full compatibility with LaTeX math syntax
  • Server-Side Rendering: Math is rendered on the server for optimal performance
  • Accessibility: Screen reader compatible with proper semantic markup
  • Responsive Design: Mathematical expressions adapt to all screen sizes
  • High Quality: Professional typography with proper spacing and alignment

Basic Mathematical Expressions

Inline Mathematics

Mathematics can flow naturally within text using single dollar signs. For example, the famous equation E=mc2E = mc^2E=mc2 revolutionized physics, while the quadratic formula x=−b±b2−4ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}x=2a−b±b2−4ac​​ solves second-degree polynomials.

Other inline examples include Euler's number e≈2.718e \approx 2.718e≈2.718, the golden ratio ϕ=1+52\phi = \frac{1 + \sqrt{5}}{2}ϕ=21+5​​, and the imaginary unit i=−1i = \sqrt{-1}i=−1​.

Display Mathematics

For larger, more complex expressions, we use display mode with double dollar signs:

∫−∞∞e−x2dx=π\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}∫−∞∞​e−x2dx=π​

The Schrödinger equation in quantum mechanics:

iℏ∂∂tΨ(r,t)=H^Ψ(r,t)i\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \hat{H}\Psi(\mathbf{r},t)iℏ∂t∂​Ψ(r,t)=H^Ψ(r,t)

Euler's identity, often called the most beautiful equation in mathematics:

eiπ+1=0e^{i\pi} + 1 = 0eiπ+1=0

Advanced Mathematical Structures

Matrices and Linear Algebra

Matrix multiplication is elegantly displayed:

(abcd)(xy)=(ax+bycx+dy)\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}(ac​bd​)(xy​)=(ax+bycx+dy​)

The determinant of a 3×3 matrix (with line breaks for readability):

det⁡(A)=a11(a22a33−a23a32)−a12(a21a33−a23a31)+a13(a21a32−a22a31)\begin{align} \det(A) &= a_{11}(a_{22}a_{33} - a_{23}a_{32}) \\ &\quad - a_{12}(a_{21}a_{33} - a_{23}a_{31}) \\ &\quad + a_{13}(a_{21}a_{32} - a_{22}a_{31}) \end{align}det(A)​=a11​(a22​a33​−a23​a32​)−a12​(a21​a33​−a23​a31​)+a13​(a21​a32​−a22​a31​)​​

Eigenvalue equation:

Av=λvA\mathbf{v} = \lambda\mathbf{v}Av=λv

Calculus and Analysis

Derivatives and Limits

The fundamental definition of a derivative:

f′(x)=lim⁡h→0f(x+h)−f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}f′(x)=h→0lim​hf(x+h)−f(x)​

Partial derivatives in multivariable calculus:

∂f∂x=lim⁡h→0f(x+h,y)−f(x,y)h\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}∂x∂f​=h→0lim​hf(x+h,y)−f(x,y)​

The chain rule for composite functions:

ddx[f(g(x))]=f′(g(x))⋅g′(x)\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)dxd​[f(g(x))]=f′(g(x))⋅g′(x)

Integrals and Series

The Riemann sum definition of integration:

∫abf(x)dx=lim⁡n→∞∑i=1nf(xi)Δx\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x∫ab​f(x)dx=n→∞lim​i=1∑n​f(xi​)Δx

Taylor series expansion:

f(x)=f(a)+f′(a)(x−a)+f′′(a)2!(x−a)2+f′′′(a)3!(x−a)3+⋯f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdotsf(x)=f(a)+f′(a)(x−a)+2!f′′(a)​(x−a)2+3!f′′′(a)​(x−a)3+⋯

The Fourier transform:

f^(ξ)=∫−∞∞f(x)e−2πixξdx\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dxf^​(ξ)=∫−∞∞​f(x)e−2πixξdx

Probability and Statistics

Probability Distributions

The normal (Gaussian) distribution:

f(x)=1σ2πe−12(x−μσ)2f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}f(x)=σ2π​1​e−21​(σx−μ​)2

Bayes' theorem, fundamental to statistical inference:

P(A∣B)=P(B∣A)⋅P(A)P(B)P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}P(A∣B)=P(B)P(B∣A)⋅P(A)​

The binomial probability mass function:

P(X=k)=(nk)pk(1−p)n−kP(X = k) = \binom{n}{k} p^k (1-p)^{n-k}P(X=k)=(kn​)pk(1−p)n−k

Information Theory

Shannon entropy:

H(X)=−∑i=1np(xi)log⁡2p(xi)H(X) = -\sum_{i=1}^n p(x_i) \log_2 p(x_i)H(X)=−i=1∑n​p(xi​)log2​p(xi​)

Advanced Physics and Engineering

Quantum Mechanics

The time-dependent Schrödinger equation:

iℏ∂∂t∣ψ(t)⟩=H^∣ψ(t)⟩i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle = \hat{H}|\psi(t)\rangleiℏ∂t∂​∣ψ(t)⟩=H^∣ψ(t)⟩

Heisenberg uncertainty principle:

ΔxΔp≥ℏ2\Delta x \Delta p \geq \frac{\hbar}{2}ΔxΔp≥2ℏ​

Wave function normalization:

∫−∞∞∣ψ(x)∣2dx=1\int_{-\infty}^{\infty} |\psi(x)|^2 dx = 1∫−∞∞​∣ψ(x)∣2dx=1

Electromagnetic Theory

Maxwell's equations in differential form (numbered):

∇⋅E=ρϵ0∇⋅B=0∇×E=−∂B∂t∇×B=μ0J+μ0ϵ0∂E∂t\begin{align} \nabla \cdot \mathbf{E} &= \frac{\rho}{\epsilon_0} \tag{1} \\ \nabla \cdot \mathbf{B} &= 0 \tag{2} \\ \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \tag{3} \\ \nabla \times \mathbf{B} &= \mu_0\mathbf{J} + \mu_0\epsilon_0\frac{\partial \mathbf{E}}{\partial t} \tag{4} \end{align}∇⋅E∇⋅B∇×E∇×B​=ϵ0​ρ​=0=−∂t∂B​=μ0​J+μ0​ϵ0​∂t∂E​​(1)(2)(3)(4)​

General Relativity

Einstein's field equations:

Gμν+Λgμν=8πGc4TμνG_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}Gμν​+Λgμν​=c48πG​Tμν​

The metric tensor for Schwarzschild spacetime:

ds2=−(1−2GMc2r)c2dt2+(1−2GMc2r)−1dr2+r2dθ2+r2sin⁡2θdϕ2ds^2 = -\left(1-\frac{2GM}{c^2r}\right)c^2dt^2 + \left(1-\frac{2GM}{c^2r}\right)^{-1}dr^2 + r^2d\theta^2 + r^2\sin^2\theta d\phi^2ds2=−(1−c2r2GM​)c2dt2+(1−c2r2GM​)−1dr2+r2dθ2+r2sin2θdϕ2

Complex Analysis and Advanced Topics

Residue Theory

The residue theorem for complex integration:

∮Cf(z)dz=2πi∑k=1nRes(f,ak)\oint_C f(z) dz = 2\pi i \sum_{k=1}^n \text{Res}(f, a_k)∮C​f(z)dz=2πik=1∑n​Res(f,ak​)

For a simple pole at z=az = az=a:

Res(f,a)=lim⁡z→a(z−a)f(z)\text{Res}(f, a) = \lim_{z \to a} (z-a)f(z)Res(f,a)=z→alim​(z−a)f(z)

Number Theory

The Riemann zeta function:

ζ(s)=∑n=1∞1ns=∏p prime11−p−s\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1-p^{-s}}ζ(s)=n=1∑∞​ns1​=p prime∏​1−p−s1​

Euler's product formula connecting primes and integers:

∑n=1∞1ns=∏p(1+1ps+1p2s+1p3s+⋯ )\sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \frac{1}{p^{3s}} + \cdots\right)n=1∑∞​ns1​=p∏​(1+ps1​+p2s1​+p3s1​+⋯)

Topology and Geometry

The Gauss-Bonnet theorem:

∫MK dA+∫∂Mkg ds=2πχ(M)\int_M K \, dA + \int_{\partial M} k_g \, ds = 2\pi \chi(M)∫M​KdA+∫∂M​kg​ds=2πχ(M)

Fundamental group representation:

π1(X,x0)={[γ]:γ is a loop at x0}/∼\pi_1(X, x_0) = \{[\gamma] : \gamma \text{ is a loop at } x_0\} / \simπ1​(X,x0​)={[γ]:γ is a loop at x0​}/∼

Special Functions and Advanced Constructs

Bessel Functions

The Bessel differential equation:

x2d2ydx2+xdydx+(x2−ν2)y=0x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - \nu^2) y = 0x2dx2d2y​+xdxdy​+(x2−ν2)y=0

Gamma Function

The gamma function and its properties:

Γ(z)=∫0∞tz−1e−tdt\Gamma(z) = \int_0^{\infty} t^{z-1} e^{-t} dtΓ(z)=∫0∞​tz−1e−tdt

With the functional equation:

Γ(z+1)=zΓ(z)\Gamma(z+1) = z\Gamma(z)Γ(z+1)=zΓ(z)

Hypergeometric Functions

The hypergeometric function:

2F1(a,b;c;z)=∑n=0∞(a)n(b)n(c)nznn!{}_2F_1(a,b;c;z) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n} \frac{z^n}{n!}2​F1​(a,b;c;z)=n=0∑∞​(c)n​(a)n​(b)n​​n!zn​

Conditional and Piecewise Functions

Functions with multiple conditions:

f(x)={x2if x≥0−x2if x<00if x=0f(x) = \begin{cases} x^2 & \text{if } x \geq 0 \\ -x^2 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \end{cases}f(x)=⎩⎨⎧​x2−x20​if x≥0if x<0if x=0​

The Heaviside step function:

H(x)={0if x<012if x=01if x>0H(x) = \begin{cases} 0 & \text{if } x < 0 \\ \frac{1}{2} & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases}H(x)=⎩⎨⎧​021​1​if x<0if x=0if x>0​

Advanced Typography Features

Multi-line Equations with Alignment

System of linear equations:

2x+3y−z=1x−y+2z=33x+2y+z=7\begin{align} 2x + 3y - z &= 1 \\ x - y + 2z &= 3 \\ 3x + 2y + z &= 7 \end{align}2x+3y−zx−y+2z3x+2y+z​=1=3=7​​

Large Operators and Limits

Multiple summations and products:

∑i=1n∑j=1m∏k=1paijk\sum_{i=1}^{n} \sum_{j=1}^{m} \prod_{k=1}^{p} a_{ijk}i=1∑n​j=1∑m​k=1∏p​aijk​

Nested integrals with limits:

∭Df(x,y,z) dx dy dz=∫z1z2∫y1(z)y2(z)∫x1(y,z)x2(y,z)f(x,y,z) dx dy dz\iiint_D f(x,y,z) \, dx \, dy \, dz = \int_{z_1}^{z_2} \int_{y_1(z)}^{y_2(z)} \int_{x_1(y,z)}^{x_2(y,z)} f(x,y,z) \, dx \, dy \, dz∭D​f(x,y,z)dxdydz=∫z1​z2​​∫y1​(z)y2​(z)​∫x1​(y,z)x2​(y,z)​f(x,y,z)dxdydz

Continued Fractions

The golden ratio as an infinite continued fraction:

ϕ=1+11+11+11+11+⋱\phi = 1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \cfrac{1}{1 + \ddots}}}}ϕ=1+1+1+1+1+⋱1​1​1​1​

Commutative Diagrams

While MathJax supports basic diagram structures:

A→fB↓↓C→gD\begin{array}{ccc} A & \xrightarrow{f} & B \\ \downarrow & & \downarrow \\ C & \xrightarrow{g} & D \end{array}A↓C​f​g​​B↓D​

Greek Letters and Special Symbols

Complete Greek Alphabet

Lowercase: α,β,γ,δ,ϵ,ε,ζ,η,θ,ϑ,ι,κ,λ,μ,ν,ξ,π,ϖ,ρ,ϱ,σ,ς,τ,υ,ϕ,φ,χ,ψ,ω\alpha, \beta, \gamma, \delta, \epsilon, \varepsilon, \zeta, \eta, \theta, \vartheta, \iota, \kappa, \lambda, \mu, \nu, \xi, \pi, \varpi, \rho, \varrho, \sigma, \varsigma, \tau, \upsilon, \phi, \varphi, \chi, \psi, \omegaα,β,γ,δ,ϵ,ε,ζ,η,θ,ϑ,ι,κ,λ,μ,ν,ξ,π,ϖ,ρ,ϱ,σ,ς,τ,υ,ϕ,φ,χ,ψ,ω

Uppercase: A,B,Γ,Δ,E,Z,H,Θ,I,K,Λ,M,N,Ξ,Π,P,Σ,T,Υ,Φ,X,Ψ,ΩA, B, \Gamma, \Delta, E, Z, H, \Theta, I, K, \Lambda, M, N, \Xi, \Pi, P, \Sigma, T, \Upsilon, \Phi, X, \Psi, \OmegaA,B,Γ,Δ,E,Z,H,Θ,I,K,Λ,M,N,Ξ,Π,P,Σ,T,Υ,Φ,X,Ψ,Ω

Mathematical Operators

Set theory: ∪,∩,⊂,⊆,⊃,⊇,∈,∉,∅,∅\cup, \cap, \subset, \subseteq, \supset, \supseteq, \in, \notin, \emptyset, \varnothing∪,∩,⊂,⊆,⊃,⊇,∈,∈/,∅,∅

Logic: ∧,∨,¬,  ⟹  ,  ⟺  ,∃,∀,∴,∵\land, \lor, \neg, \implies, \iff, \exists, \forall, \therefore, \because∧,∨,¬,⟹,⟺,∃,∀,∴,∵

Relations: ≤,≥,≪,≫,≡,≈,∼,≃,≅,∝\leq, \geq, \ll, \gg, \equiv, \approx, \sim, \simeq, \cong, \propto≤,≥,≪,≫,≡,≈,∼,≃,≅,∝

Arrows: →,←,↔,⇒,⇐,⇔,↦,→\rightarrow, \leftarrow, \leftrightarrow, \Rightarrow, \Leftarrow, \Leftrightarrow, \mapsto, \to→,←,↔,⇒,⇐,⇔,↦,→

Responsive Design Features

Our mathematical typography is fully responsive:

  • Mobile Optimization: Long equations scroll horizontally on small screens
  • Touch-Friendly: Proper spacing for touch interaction
  • High DPI Support: Crisp rendering on all device resolutions
  • Accessibility: Screen reader compatible with proper semantic markup
  • Dark Mode: Expressions adapt to light and dark themes seamlessly

Performance and Quality

Server-Side Rendering Benefits

  1. Fast Initial Load: Math is pre-rendered on the server
  2. SEO Friendly: Search engines can index mathematical content
  3. No Client-Side Processing: Reduces browser computational load
  4. Consistent Rendering: Identical appearance across all browsers

Typography Quality

  • Professional Spacing: Proper mathematical spacing rules
  • Font Consistency: Harmonious integration with body text
  • Symbol Clarity: High-quality mathematical symbols and operators
  • Layout Stability: No content shift during rendering

Usage Guidelines

Best Practices

  1. Inline Math: Use $...$ for mathematical expressions within sentences
  2. Display Math: Use $$...$$ for centered, standalone equations
  3. Spacing: Let MathJax handle spacing automatically
  4. Line Breaks: Use \\ for multi-line expressions
  5. Alignment: Use align environment for aligned equation systems

Syntax Examples

Inline Mathematics: Here's an example of inline math: ∫01x2dx=13\int_0^1 x^2 dx = \frac{1}{3}∫01​x2dx=31​

Display Mathematics:

∑n=1∞1n2=π26\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}n=1∑∞​n21​=6π2​

Aligned Equations:

cos⁡2θ+sin⁡2θ=1cos⁡(2θ)=cos⁡2θ−sin⁡2θ\begin{align} \cos^2\theta + \sin^2\theta &= 1 \\ \cos(2\theta) &= \cos^2\theta - \sin^2\theta \end{align}cos2θ+sin2θcos(2θ)​=1=cos2θ−sin2θ​​

Source Code Examples:

Inline: $\int_0^1 x^2 dx = \frac{1}{3}$

Display:
$$
\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}
$$

Aligned:
$$
\begin{align}
\cos^2\theta + \sin^2\theta &= 1 \\
\cos(2\theta) &= \cos^2\theta - \sin^2\theta
\end{align}
$$

Conclusion

This showcase demonstrates the comprehensive mathematical typography capabilities of our Next.js blog. With MathJax providing server-side rendering, we achieve professional-quality mathematical content that is fast, accessible, and responsive across all devices.

Whether you're writing about basic algebra or advanced theoretical physics, our platform provides the tools needed for clear, beautiful mathematical communication.

Key Features Demonstrated:

  • Inline and display mathematics
  • Complex multi-line equations
  • Matrix and vector notation
  • Greek letters and special symbols
  • Responsive design principles
  • Accessibility compliance
  • Professional typography standards

The combination of Next.js, MathJax, and careful responsive design creates an optimal environment for technical and mathematical content creation.

Leave a Comment

Comments

Loading comments...

Comments are reviewed before publication.